Short-Term Effects of Drying and Rewetting on CO2 and CH4 Emissions from High-Altitude Peatlands on the Tibetan Plateau
نویسندگان
چکیده
This study used mesocosms to examine the effects of alternate drying and rewetting on CO2 and CH4 emissions from high-altitude peatlands on the Tibetan Plateau. The drying and rewetting experiment conducted in this study included three phases: a 10-day predrying phase, a 32-day drying phase, and an 18-day rewetting phase. During the experiment, the water table varied between 0 and 50 cm with respect to the reference peat column where the water table stayed constant at 0 cm. The study found that drying and rewetting had no significant effect on CO2 emissions from the peatland, while CH4 emissions decreased. The cumulative CH4 emissions in the control group was 2.1 times higher than in the drying and rewetting treatment over the study period. Moreover, CO2 and CH4 emissions were positively correlated with soil temperature, and the drying process increased the goodness of fit of the regression models predicting the relationships between CO2 and CH4 emissions and temperature. These results indicate that small-scale water table variation has a limited effect on CO2 emissions, but might reduce CH4 emissions in high-altitude peatlands on the Tibetan Plateau.
منابع مشابه
Rewetting Decreases Carbon Emissions from the Zoige Alpine Peatland on the Tibetan Plateau
Peatlands play an important role in the global carbon cycle and potentially have a significant impact on regional climate change. Restoring and rewetting the degraded peatlands is an urgent task. However, effects of rewetting on the carbon emissions of peatlands remain poorly understood. In this study, the process of rewetting a piece of the degraded Zoige alpine peatland was experimentally sim...
متن کاملShort-term effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China
An increasing nitrogen deposition experiment (2 g N m 2 year 1) was initiated in an alpine meadow on the Qinghai-Tibetan Plateau in May 2007. The greenhouse gases (GHGs), including CO2, CH4 and N2O, was observed in the growing season (from May to September) of 2008 using static chamber and gas chromatography techniques. The CO2 emission and CH4 uptake rate showed a seasonal fluctuation, reachin...
متن کاملEstimation of greenhouse gases emissions from urban traffic: a case study of Hamadan city
Background and Objective: Transportation sector generates the largest share of greenhouse gas emissions (CO2 and CH4) which causes global warming. “Stop-and-go” driving and congested traffic flow results in a decrease in average car speeds, an increase in traffic incidents, and finally escalates GHGs emissions. Hence, congestion is directly related to carbon emissions. The objective of this stu...
متن کاملGreenhouse gas balances of managed peatlands in the Nordic countries – present knowledge and gaps
This article provides an overview of the effects of land-use on the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and from peatlands in the Nordic countries based on the field data from about 100 studies. In addition, this review aims to identify the gaps in the present knowledge on the greenhouse gas (GHG) balances associated with the land-use of these northern ecosyste...
متن کاملModeling CH4 Emissions from Natural Wetlands on the Tibetan Plateau over the Past 60 Years: Influence of Climate Change and Wetland Loss
The natural wetlands of the Tibetan Plateau (TP) are considered to be an important natural source of methane (CH4) to the atmosphere. The long-term variation in CH4 associated with climate change and wetland loss is still largely unknown. From 1950 to 2010, CH4 emissions over the TP were analyzed using a model framework that integrates CH4MODwetland, TOPMODEL, and TEM models. Our simulation rev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016